Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Multiple processes contribute to methane emission in a riparian cottonwood forest ecosystem.

Identifieur interne : 000255 ( Main/Exploration ); précédent : 000254; suivant : 000256

Multiple processes contribute to methane emission in a riparian cottonwood forest ecosystem.

Auteurs : Lawrence B. Flanagan [Canada] ; Dylan J. Nikkel [Canada] ; Lauren M. Scherloski [Canada] ; Rachel E. Tkach [Canada] ; Kristian M. Smits [Canada] ; L Brent Selinger [Canada] ; Stewart B. Rood [Canada]

Source :

RBID : pubmed:33006137

Abstract

Methane emission from trees may partially or completely offset the methane sink in upland soils, the only process that has been regularly included in methane budgets for forest ecosystems. Our objective was to analyze multiple biogeochemical processes that influence the production, oxidation and transport of methane in a riparian cottonwood ecosystem and its adjacent river. We combined chamber flux measurements on tree stems, forest soil and the river surface with eddy covariance measurements of methane net ecosystem exchange. In addition, we tested whether methanogens were present in cottonwood stems, shallow soil layers and alluvial groundwater. Average midday peak in net methane emission measured by eddy covariance was c. 12 nmol m-2  s-1 . The average uptake of methane by soils (0.87 nmol m-2  s-1 ) was largely offset by tree stem methane emission (0.75 nmol m-2  s-1 ). There was evidence of methanogens in tree stems but not in shallow soil. Growing season (May-September) cumulative net methane emission (17.4 mmol CH4  m-2 ) included methane produced in cottonwood stems and methane input to the nocturnal boundary layer from the forest and the adjacent river. The multiple processes contributing to methane emission illustrated the linked nature of these adjacent terrestrial and aquatic ecosystems.

DOI: 10.1111/nph.16977
PubMed: 33006137


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Multiple processes contribute to methane emission in a riparian cottonwood forest ecosystem.</title>
<author>
<name sortKey="Flanagan, Lawrence B" sort="Flanagan, Lawrence B" uniqKey="Flanagan L" first="Lawrence B" last="Flanagan">Lawrence B. Flanagan</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biological Sciences, University of Lethbridge, 4401 University Drive, Lethbridge, AB, T1K 3M4, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Biological Sciences, University of Lethbridge, 4401 University Drive, Lethbridge, AB, T1K 3M4</wicri:regionArea>
<wicri:noRegion>T1K 3M4</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Nikkel, Dylan J" sort="Nikkel, Dylan J" uniqKey="Nikkel D" first="Dylan J" last="Nikkel">Dylan J. Nikkel</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive, Lethbridge, AB, T1K 3M4, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive, Lethbridge, AB, T1K 3M4</wicri:regionArea>
<wicri:noRegion>T1K 3M4</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Scherloski, Lauren M" sort="Scherloski, Lauren M" uniqKey="Scherloski L" first="Lauren M" last="Scherloski">Lauren M. Scherloski</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biological Sciences, University of Lethbridge, 4401 University Drive, Lethbridge, AB, T1K 3M4, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Biological Sciences, University of Lethbridge, 4401 University Drive, Lethbridge, AB, T1K 3M4</wicri:regionArea>
<wicri:noRegion>T1K 3M4</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Tkach, Rachel E" sort="Tkach, Rachel E" uniqKey="Tkach R" first="Rachel E" last="Tkach">Rachel E. Tkach</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biological Sciences, University of Lethbridge, 4401 University Drive, Lethbridge, AB, T1K 3M4, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Biological Sciences, University of Lethbridge, 4401 University Drive, Lethbridge, AB, T1K 3M4</wicri:regionArea>
<wicri:noRegion>T1K 3M4</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Smits, Kristian M" sort="Smits, Kristian M" uniqKey="Smits K" first="Kristian M" last="Smits">Kristian M. Smits</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biological Sciences, University of Lethbridge, 4401 University Drive, Lethbridge, AB, T1K 3M4, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Biological Sciences, University of Lethbridge, 4401 University Drive, Lethbridge, AB, T1K 3M4</wicri:regionArea>
<wicri:noRegion>T1K 3M4</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Selinger, L Brent" sort="Selinger, L Brent" uniqKey="Selinger L" first="L Brent" last="Selinger">L Brent Selinger</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biological Sciences, University of Lethbridge, 4401 University Drive, Lethbridge, AB, T1K 3M4, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Biological Sciences, University of Lethbridge, 4401 University Drive, Lethbridge, AB, T1K 3M4</wicri:regionArea>
<wicri:noRegion>T1K 3M4</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Rood, Stewart B" sort="Rood, Stewart B" uniqKey="Rood S" first="Stewart B" last="Rood">Stewart B. Rood</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biological Sciences, University of Lethbridge, 4401 University Drive, Lethbridge, AB, T1K 3M4, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Biological Sciences, University of Lethbridge, 4401 University Drive, Lethbridge, AB, T1K 3M4</wicri:regionArea>
<wicri:noRegion>T1K 3M4</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:33006137</idno>
<idno type="pmid">33006137</idno>
<idno type="doi">10.1111/nph.16977</idno>
<idno type="wicri:Area/Main/Corpus">000084</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000084</idno>
<idno type="wicri:Area/Main/Curation">000084</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000084</idno>
<idno type="wicri:Area/Main/Exploration">000084</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Multiple processes contribute to methane emission in a riparian cottonwood forest ecosystem.</title>
<author>
<name sortKey="Flanagan, Lawrence B" sort="Flanagan, Lawrence B" uniqKey="Flanagan L" first="Lawrence B" last="Flanagan">Lawrence B. Flanagan</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biological Sciences, University of Lethbridge, 4401 University Drive, Lethbridge, AB, T1K 3M4, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Biological Sciences, University of Lethbridge, 4401 University Drive, Lethbridge, AB, T1K 3M4</wicri:regionArea>
<wicri:noRegion>T1K 3M4</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Nikkel, Dylan J" sort="Nikkel, Dylan J" uniqKey="Nikkel D" first="Dylan J" last="Nikkel">Dylan J. Nikkel</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive, Lethbridge, AB, T1K 3M4, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive, Lethbridge, AB, T1K 3M4</wicri:regionArea>
<wicri:noRegion>T1K 3M4</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Scherloski, Lauren M" sort="Scherloski, Lauren M" uniqKey="Scherloski L" first="Lauren M" last="Scherloski">Lauren M. Scherloski</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biological Sciences, University of Lethbridge, 4401 University Drive, Lethbridge, AB, T1K 3M4, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Biological Sciences, University of Lethbridge, 4401 University Drive, Lethbridge, AB, T1K 3M4</wicri:regionArea>
<wicri:noRegion>T1K 3M4</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Tkach, Rachel E" sort="Tkach, Rachel E" uniqKey="Tkach R" first="Rachel E" last="Tkach">Rachel E. Tkach</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biological Sciences, University of Lethbridge, 4401 University Drive, Lethbridge, AB, T1K 3M4, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Biological Sciences, University of Lethbridge, 4401 University Drive, Lethbridge, AB, T1K 3M4</wicri:regionArea>
<wicri:noRegion>T1K 3M4</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Smits, Kristian M" sort="Smits, Kristian M" uniqKey="Smits K" first="Kristian M" last="Smits">Kristian M. Smits</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biological Sciences, University of Lethbridge, 4401 University Drive, Lethbridge, AB, T1K 3M4, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Biological Sciences, University of Lethbridge, 4401 University Drive, Lethbridge, AB, T1K 3M4</wicri:regionArea>
<wicri:noRegion>T1K 3M4</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Selinger, L Brent" sort="Selinger, L Brent" uniqKey="Selinger L" first="L Brent" last="Selinger">L Brent Selinger</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biological Sciences, University of Lethbridge, 4401 University Drive, Lethbridge, AB, T1K 3M4, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Biological Sciences, University of Lethbridge, 4401 University Drive, Lethbridge, AB, T1K 3M4</wicri:regionArea>
<wicri:noRegion>T1K 3M4</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Rood, Stewart B" sort="Rood, Stewart B" uniqKey="Rood S" first="Stewart B" last="Rood">Stewart B. Rood</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biological Sciences, University of Lethbridge, 4401 University Drive, Lethbridge, AB, T1K 3M4, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Biological Sciences, University of Lethbridge, 4401 University Drive, Lethbridge, AB, T1K 3M4</wicri:regionArea>
<wicri:noRegion>T1K 3M4</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The New phytologist</title>
<idno type="eISSN">1469-8137</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Methane emission from trees may partially or completely offset the methane sink in upland soils, the only process that has been regularly included in methane budgets for forest ecosystems. Our objective was to analyze multiple biogeochemical processes that influence the production, oxidation and transport of methane in a riparian cottonwood ecosystem and its adjacent river. We combined chamber flux measurements on tree stems, forest soil and the river surface with eddy covariance measurements of methane net ecosystem exchange. In addition, we tested whether methanogens were present in cottonwood stems, shallow soil layers and alluvial groundwater. Average midday peak in net methane emission measured by eddy covariance was c. 12 nmol m
<sup>-2</sup>
 s
<sup>-1</sup>
. The average uptake of methane by soils (0.87 nmol m
<sup>-2</sup>
 s
<sup>-1</sup>
) was largely offset by tree stem methane emission (0.75 nmol m
<sup>-2</sup>
 s
<sup>-1</sup>
). There was evidence of methanogens in tree stems but not in shallow soil. Growing season (May-September) cumulative net methane emission (17.4 mmol CH
<sub>4</sub>
 m
<sup>-2</sup>
) included methane produced in cottonwood stems and methane input to the nocturnal boundary layer from the forest and the adjacent river. The multiple processes contributing to methane emission illustrated the linked nature of these adjacent terrestrial and aquatic ecosystems.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="Publisher" Owner="NLM">
<PMID Version="1">33006137</PMID>
<DateRevised>
<Year>2020</Year>
<Month>10</Month>
<Day>31</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1469-8137</ISSN>
<JournalIssue CitedMedium="Internet">
<PubDate>
<Year>2020</Year>
<Month>Oct</Month>
<Day>01</Day>
</PubDate>
</JournalIssue>
<Title>The New phytologist</Title>
<ISOAbbreviation>New Phytol</ISOAbbreviation>
</Journal>
<ArticleTitle>Multiple processes contribute to methane emission in a riparian cottonwood forest ecosystem.</ArticleTitle>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/nph.16977</ELocationID>
<Abstract>
<AbstractText>Methane emission from trees may partially or completely offset the methane sink in upland soils, the only process that has been regularly included in methane budgets for forest ecosystems. Our objective was to analyze multiple biogeochemical processes that influence the production, oxidation and transport of methane in a riparian cottonwood ecosystem and its adjacent river. We combined chamber flux measurements on tree stems, forest soil and the river surface with eddy covariance measurements of methane net ecosystem exchange. In addition, we tested whether methanogens were present in cottonwood stems, shallow soil layers and alluvial groundwater. Average midday peak in net methane emission measured by eddy covariance was c. 12 nmol m
<sup>-2</sup>
 s
<sup>-1</sup>
. The average uptake of methane by soils (0.87 nmol m
<sup>-2</sup>
 s
<sup>-1</sup>
) was largely offset by tree stem methane emission (0.75 nmol m
<sup>-2</sup>
 s
<sup>-1</sup>
). There was evidence of methanogens in tree stems but not in shallow soil. Growing season (May-September) cumulative net methane emission (17.4 mmol CH
<sub>4</sub>
 m
<sup>-2</sup>
) included methane produced in cottonwood stems and methane input to the nocturnal boundary layer from the forest and the adjacent river. The multiple processes contributing to methane emission illustrated the linked nature of these adjacent terrestrial and aquatic ecosystems.</AbstractText>
<CopyrightInformation>© 2020 The Authors New Phytologist © 2020 New Phytologist Foundation.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Flanagan</LastName>
<ForeName>Lawrence B</ForeName>
<Initials>LB</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0003-1748-0306</Identifier>
<AffiliationInfo>
<Affiliation>Department of Biological Sciences, University of Lethbridge, 4401 University Drive, Lethbridge, AB, T1K 3M4, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Nikkel</LastName>
<ForeName>Dylan J</ForeName>
<Initials>DJ</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive, Lethbridge, AB, T1K 3M4, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Scherloski</LastName>
<ForeName>Lauren M</ForeName>
<Initials>LM</Initials>
<AffiliationInfo>
<Affiliation>Department of Biological Sciences, University of Lethbridge, 4401 University Drive, Lethbridge, AB, T1K 3M4, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tkach</LastName>
<ForeName>Rachel E</ForeName>
<Initials>RE</Initials>
<AffiliationInfo>
<Affiliation>Department of Biological Sciences, University of Lethbridge, 4401 University Drive, Lethbridge, AB, T1K 3M4, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Smits</LastName>
<ForeName>Kristian M</ForeName>
<Initials>KM</Initials>
<AffiliationInfo>
<Affiliation>Department of Biological Sciences, University of Lethbridge, 4401 University Drive, Lethbridge, AB, T1K 3M4, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Selinger</LastName>
<ForeName>L Brent</ForeName>
<Initials>LB</Initials>
<AffiliationInfo>
<Affiliation>Department of Biological Sciences, University of Lethbridge, 4401 University Drive, Lethbridge, AB, T1K 3M4, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Rood</LastName>
<ForeName>Stewart B</ForeName>
<Initials>SB</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0003-1340-1172</Identifier>
<AffiliationInfo>
<Affiliation>Department of Biological Sciences, University of Lethbridge, 4401 University Drive, Lethbridge, AB, T1K 3M4, Canada.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<Agency>ConocoPhillips</Agency>
<Country></Country>
</Grant>
<Grant>
<Agency>Natural Sciences and Engineering Research Council of Canada</Agency>
<Country></Country>
</Grant>
<Grant>
<Agency>Canada Foundation for Innovation</Agency>
<Country></Country>
</Grant>
<Grant>
<Agency>Ministry of Advanced Education, Government of Alberta</Agency>
<Country></Country>
</Grant>
<Grant>
<Agency>Alberta Innovates - Energy and Environment Solutions</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>10</Month>
<Day>01</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>New Phytol</MedlineTA>
<NlmUniqueID>9882884</NlmUniqueID>
<ISSNLinking>0028-646X</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Populus deltoides </Keyword>
<Keyword MajorTopicYN="N">Populus angustifolia (cottonwoods)</Keyword>
<Keyword MajorTopicYN="N">eddy covariance</Keyword>
<Keyword MajorTopicYN="N">methane (CH4)</Keyword>
<Keyword MajorTopicYN="N">methane oxidation</Keyword>
<Keyword MajorTopicYN="N">methanogenesis</Keyword>
<Keyword MajorTopicYN="N">tree methane emission</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>06</Month>
<Day>25</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>09</Month>
<Day>17</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>10</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>10</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>10</Month>
<Day>2</Day>
<Hour>5</Hour>
<Minute>48</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>aheadofprint</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">33006137</ArticleId>
<ArticleId IdType="doi">10.1111/nph.16977</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>References</Title>
<Reference>
<Citation>Baldocchi DD. 2014. Measuring fluxes of trace gases and energy between ecosystems and the atmosphere - state and future of the eddy covariance method. Global Change Biology 20: 3600-3609.</Citation>
</Reference>
<Reference>
<Citation>Barba J, Bradford MA, Brewer PE, Bruhn D, Covey K, van Haren J, Megonigal JP, Mikkelsen TN, Pangala SR, Pihlatie M et al. 2019. Methane emissions from tree stems: a new frontier in the global carbon cycle. New Phytologist 222: 18-28.</Citation>
</Reference>
<Reference>
<Citation>Brix H, Sorrell BK, Orr PT. 1992. Internal pressurization and convective gas flow in some emergent freshwater macrophytes. Limnology and Oceanography 37: 1420-1433.</Citation>
</Reference>
<Reference>
<Citation>Bubier JL, Moore TR. 1994. An ecological perspective on methane emissions from northern wetlands. Trends in Ecology and Evolution 9: 460-464.</Citation>
</Reference>
<Reference>
<Citation>Bushong FW. 1907. Composition of gas from cottonwood trees. Transactions of the Kansas Academy of Science 21: 53.</Citation>
</Reference>
<Reference>
<Citation>Chanton JP, Dacey JWH. 1991. Effects of vegetation on methane flux, reservoirs, and isotopic composition. In: Sharkey TD, Holland EA, Mooney HA, eds. Trace gas emissions by plants. San Diego, CA, USA: Academic Press, 65-92.</Citation>
</Reference>
<Reference>
<Citation>Chanton JP, Whiting GJ, Happell JD, Gerard G. 1993. Contrasting rates and diurnal patterns of methane emission from emergent aquatic macrophytes. Aquatic Botany 46: 111-128.</Citation>
</Reference>
<Reference>
<Citation>Conrad R. 1999. Contribution of hydrogen to methane production and control of hydrogen concentrations in methanogenic soils and sediments. FEMS Microbiology Ecology 28: 193-202.</Citation>
</Reference>
<Reference>
<Citation>Conrad R. 2005. Quantification of methanogenic pathways using stable carbon isotopic signatures: a review and a proposal. Organic Geochemistry 36: 739-752.</Citation>
</Reference>
<Reference>
<Citation>Conrad R. 2020. Importance of hydrogenotrophic, aceticlastic and methylotrophic methanogenesis for methane production in terrestrial, aquatic and other anoxic environments: a mini review. Pedosphere 30: 25-39.</Citation>
</Reference>
<Reference>
<Citation>Covey KR, Megonigal JP. 2019. Methane production and emissions in trees and forests. New Phytologist 222: 35-51.</Citation>
</Reference>
<Reference>
<Citation>Covey KR, Wood SA, Warren RJ II, Lee XH, Bradford MA. 2012. Elevated methane concentrations in trees of an upland forest. Geophysical Research Letters 39: L15705.</Citation>
</Reference>
<Reference>
<Citation>Dacey JWH. 1981. Pressurized ventilation in the yellow waterlily. Ecology 62: 1137-1147.</Citation>
</Reference>
<Reference>
<Citation>Deshmukh CS, Julius D, Evans CD, Nardi, Susanto AP, Page SE, Gauci V, Lauren A, Sabiham S, Agus F et al. 2020. Impact of forest plantation on methane emissions from tropical peatland. Global Change Biology 26: 2477-2495.</Citation>
</Reference>
<Reference>
<Citation>Feng H, Guo J, Wang W, Song X, Yu S. 2019. Soil depth determines the composition and diversity of bacterial and archaeal communities in a poplar plantation. Forests 10: 550.</Citation>
</Reference>
<Reference>
<Citation>Flanagan LB, Orchard TE, Logie GS, Coburn CA, Rood SB. 2017. Water use in a riparian cottonwood ecosystem: eddy covariance measurements and scaling along a river corridor. Agricultural and Forest Meteorology 232: 332-348.</Citation>
</Reference>
<Reference>
<Citation>Flanagan LB, Orchard TE, Tremel TN, Rood SB. 2019. Using stable isotopes to quantify water sources for trees and shrubs in a riparian cottonwood ecosystem in flood and drought years. Hydrological Processes 33: 3070-3083.</Citation>
</Reference>
<Reference>
<Citation>Gom LA, Rood SB. 1999. Patterns of clonal occurrence in a mature cottonwood grove along the Oldman River, Alberta. Canadian Journal of Botany 77: 1095-1105.</Citation>
</Reference>
<Reference>
<Citation>Grant NJ, Whiticar MJ. 2002. Stable carbon isotopic evidence for methane oxidation in plumes above Hydrate Ridge, Cascadia Oregon Margin. Global Biogeochemical Cycles 16: 1124.</Citation>
</Reference>
<Reference>
<Citation>Hauer F, Locke H, Dreitz V, Hebblewhite M, Lowe WH, Muhlfeld CC, Nelson CR, Proctor MF, Rood SB. 2016. Gravel-bed river floodplains are the ecological nexus of glaciated mountain landscapes. Science Advances 2: e1600026.</Citation>
</Reference>
<Reference>
<Citation>Hodgkins SB, Tfaily MM, McCalley CK, Logan TA, Crill PM, Saleska SR, Rich VI, Chanton JP. 2014. Changes in peat chemistry associated with permafrost thaw increase greenhouse gas production. Proceedings of the National Academy of Sciences, USA 111: 5819-5824.</Citation>
</Reference>
<Reference>
<Citation>Joabsson A, Christensen TR, Wallen B. 1999. Vascular plant controls on methane emissions from northern peatforming wetlands. Trends in Ecology and Evolution 14: 385-388.</Citation>
</Reference>
<Reference>
<Citation>Kljun N, Calanca P, Rotach MW, Schmid HP. 2004. A simple parameterization for flux footprint predictions. Boundary-Layer Meteorology 112: 503-523.</Citation>
</Reference>
<Reference>
<Citation>Knox SH, Matthes JH, Sturtevant C, Oikawa PY, Verfaillie J, Baldocchi D. 2016. Biophysical controls on interannual variability in ecosystem-scale CO2 and CH4 exchange in a California rice paddy. Journal of Geophysical Research - Biogeosciences 121: 978-1001.</Citation>
</Reference>
<Reference>
<Citation>Knox SH, Sturtevant C, Matthes JH, Koteen L, Verfaillie J, Baldocchi D. 2015. Agricultural peatland restoration: effects of land-use change on greenhouse gas (CO2 and CH4) fluxes in the Sacramento-San Joaquin Delta. Global Change Biology 21: 750-65.</Citation>
</Reference>
<Reference>
<Citation>Kormann R, Meixner FX. 2001. An analytical footprint model for nonneutral stratification. Boundary-Layer Meteorology 99: 207-224.</Citation>
</Reference>
<Reference>
<Citation>Long KD, Flanagan LB, Cai T. 2010. Diurnal and seasonal variation in methane emissions in a northern Canadian peatland measured by eddy covariance. Global Change Biology 16: 2420-2435.</Citation>
</Reference>
<Reference>
<Citation>Luton P, Wayne JM, Sharp RJ, Riley PW. 2002. The mcrA gene as an alternative to 16S rRNA in the phylogenetic analysis of methanogen populations in landfill. Microbiology 148: 3521-3530.</Citation>
</Reference>
<Reference>
<Citation>Megonigal JP, Brewer PE, Knee KL. 2020. Radon as a natural tracer of gas transport through trees. New Phytologist 225: 1470-1475.</Citation>
</Reference>
<Reference>
<Citation>Miller JB, Mack KA, Dissly R, White JWC, Dlugokencky EJ, Tans PP. 2002. Development of analytical methods and measurements of 13C/12C in atmospheric CH4 from the NOAA Climate Monitoring and Diagnostics Laboratory Global Air Sampling Network. Journal of Geophysical Research 107: 4178.</Citation>
</Reference>
<Reference>
<Citation>Miyajima T, Wada E, Hanba YT, Vijarnsorn P. 1997. Anaerobic mineralization of indigenous organic matters and methanogenesis in tropical wetland soils. Geochimica et Cosmochimica Acta 61: 3739-3751.</Citation>
</Reference>
<Reference>
<Citation>Morin TH, Bohrer G, Stefanik KC, Rey-Sanchez AC, Matheny AM, Mitsch WJ. 2017. Combining eddy-covariance and chamber measurements to determine the methane budget from a small, heterogeneous urban floodplain wetland park. Agricultural and Forest Meteorology 237-238: 160-170.</Citation>
</Reference>
<Reference>
<Citation>Nesbit RER, Fisher R, Nimmo RH, Bendall DS, Crill PM, Gallego AV, Hornibrook ERC, Lopez-Juez E, Lowry D, Nesbit PBR et al. 2009. Emission of methane from plants. Proceedings of the Royal Society B: Biological Sciences 276: 1347-1354.</Citation>
</Reference>
<Reference>
<Citation>Pangala SR, Enrich-Prast A, Basso LS, Peixoto RB, Bastviken D, Hornibrook ERC, Gatti LV, Marotta H, Calazans LSB, Sakuragui CM et al. 2017. Large emissions from floodplain trees close the Amazon methane budget. Nature 552: 230-234.</Citation>
</Reference>
<Reference>
<Citation>Pangala SR, Hornibrook ERC, Gowing DJ, Gauci V. 2015. The contribution of trees to ecosystem methane emissions in a temperate forested wetland. Global Change Biology 21: 2642-2654.</Citation>
</Reference>
<Reference>
<Citation>Pangala SR, Moore S, Hornibrook ERC, Gauci V. 2013. Trees are major conduits for methane egress from tropical forested wetlands. New Phytologist 197: 524-531.</Citation>
</Reference>
<Reference>
<Citation>Papale D, Reichstein M, Aubinet M, Canfora E, Bernhofer C, Kutsch W, Longdoz B, Rambal S, Valentini R, Vesala T et al. 2006. Towards a standardized processing of net ecosystem exchange measured with eddy covariance technique: algorithms and uncertainty estimation. Biogeosciences 3: 571-583.</Citation>
</Reference>
<Reference>
<Citation>Pitz SA, Megonigal JP. 2017. Temperate forest methane sink diminished by tree emissions. New Phytologist 214: 1432-1439.</Citation>
</Reference>
<Reference>
<Citation>Raz-Yaseef N, Torn MS, Wu Y, Billesbach DP, Liljedahl AK, Kneafsey TJ, Romanovsky VE, Cook DR, Wullschleger SD. 2017. Large CO2 and CH4 emissions from polygonal tundra during spring thaw in northern Alaska. Geophysical Research Letters 44: 504-513.</Citation>
</Reference>
<Reference>
<Citation>Rice AL, Butenhoff CL, Shearer MJ, Teama D, Rosenstiel TN, Khalil MAK. 2010. Emissions of anaerobically produced methane by trees. Geophysical Research Letters 37: L03807.</Citation>
</Reference>
<Reference>
<Citation>Rood SB, Ball DJ, Gill KM, Kaluthota S, Letts MG, Pearce DW. 2013. Hydrologic linkages between a climate oscillation, river flows, growth, and wood Δ13C of male and female cottonwood trees. Plant, Cell & Environment 36: 984-993.</Citation>
</Reference>
<Reference>
<Citation>Rood SB, Braatne JH, Hughes FMR. 2003. Ecophysiology of riparian cottonwoods: streamflow dependency, water relations and restoration. Tree Physiology 23: 1113-1124.</Citation>
</Reference>
<Reference>
<Citation>Rood SB, Samuelson GM, Braatne JH, Gourley CR, Hughes FMR, Mahoney JM. 2005. Managing rivers to restore floodplain forests. Frontiers of Ecology and Environment 3: 193-201.</Citation>
</Reference>
<Reference>
<Citation>Saunois M, Bousquest P, Poulter B, Peregon A, Ciais P, Canadell JG, Dlugokencky EJ, Etiope G, Bastviken D, Houweling S et al. 2016. The global methane budget 2000-2012. Earth System Science Data 8: 697-751.</Citation>
</Reference>
<Reference>
<Citation>Snover AK, Quay PD. 2000. Hydrogen and carbon kinetic isotope effects during soil uptake of atmospheric methane. Global Biogeochemical Cycles 14: 25-39.</Citation>
</Reference>
<Reference>
<Citation>Stanley EH, Casson NJ, Christel ST, Crawford JT, Loken LC, Oliver SK. 2016. The ecology of methane in streams and rivers: patterns, controls, and global significance. Ecological Monographs 86: 146-171.</Citation>
</Reference>
<Reference>
<Citation>Steinberg LM, Regan JM. 2009. mcrA-targeted real-time quantitative PCR method to examine methanogen communities. Applied and Environmental Microbiology 75: 4435-4442.</Citation>
</Reference>
<Reference>
<Citation>Wang ZP, Gu Q, Deng FD, Huang JH, Megonigal JP, Yu Q, Lu XT, Lil LH, Chang S, Zhang YH et al. 2016. Methane emissions from the trunks of living trees on upland soils. New Phytologist 211: 429-439.</Citation>
</Reference>
<Reference>
<Citation>Wang ZP, Han SJ, Lil HL, Deng F-D, Zheng YH, Liu HF, Han XG. 2017. Methane production explained largely by water content in the heartwood of living trees in upland forests. Journal of Geophysical Research - Biogeosciences 122: 2479-2489.</Citation>
</Reference>
<Reference>
<Citation>Warner DL, Villarreal S, McWilliams K, Inamdar S, Vargas R. 2017. Carbon dioxide and methane fluxes from tree stems, coarse woody debris, and soils in an upland temperate forest. Ecosystems 20: 1205-1216.</Citation>
</Reference>
<Reference>
<Citation>Whiticar MJ. 1999. Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chemical Biology 161: 291-314.</Citation>
</Reference>
<Reference>
<Citation>Whiting GJ, Chanton JP. 1996. Control of the diurnal pattern of methane emission from emergent aquatic macrophytes by gas transport mechanisms. Aquatic Botany 54: 237-253.</Citation>
</Reference>
<Reference>
<Citation>Yang H, Rood SB, Flanagan LB. 2019. Controls on ecosystem water-use and water-use efficiency: Insights from a comparison between grassland and riparian forest in the northern Great Plains. Agricultural and Forest Meteorology 271: 22-32.</Citation>
</Reference>
<Reference>
<Citation>Yip DZ, Veach AM, Yang ZK, Cregger MA, Schadt CW. 2019. Methanogenic Archaea dominate mature heartwood habitats of Eastern Cottonwood (Populus deltoides). New Phytologist 222: 115-121.</Citation>
</Reference>
<Reference>
<Citation>Zanewich KP, Pearce DW, Rood SB. 2018. Heterosis in poplar involves phenotypic stability: cottonwood hybrids outperform their parental species at suboptimal temperature. Tree Physiology 38: 789-800.</Citation>
</Reference>
<Reference>
<Citation>Zeikus JG, Ward JC. 1974. Methane formation in living trees: a microbial origin. Science 184: 1181-1183.</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Canada</li>
</country>
</list>
<tree>
<country name="Canada">
<noRegion>
<name sortKey="Flanagan, Lawrence B" sort="Flanagan, Lawrence B" uniqKey="Flanagan L" first="Lawrence B" last="Flanagan">Lawrence B. Flanagan</name>
</noRegion>
<name sortKey="Nikkel, Dylan J" sort="Nikkel, Dylan J" uniqKey="Nikkel D" first="Dylan J" last="Nikkel">Dylan J. Nikkel</name>
<name sortKey="Rood, Stewart B" sort="Rood, Stewart B" uniqKey="Rood S" first="Stewart B" last="Rood">Stewart B. Rood</name>
<name sortKey="Scherloski, Lauren M" sort="Scherloski, Lauren M" uniqKey="Scherloski L" first="Lauren M" last="Scherloski">Lauren M. Scherloski</name>
<name sortKey="Selinger, L Brent" sort="Selinger, L Brent" uniqKey="Selinger L" first="L Brent" last="Selinger">L Brent Selinger</name>
<name sortKey="Smits, Kristian M" sort="Smits, Kristian M" uniqKey="Smits K" first="Kristian M" last="Smits">Kristian M. Smits</name>
<name sortKey="Tkach, Rachel E" sort="Tkach, Rachel E" uniqKey="Tkach R" first="Rachel E" last="Tkach">Rachel E. Tkach</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000255 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000255 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:33006137
   |texte=   Multiple processes contribute to methane emission in a riparian cottonwood forest ecosystem.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:33006137" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020